Articles | Volume 8, issue 2
https://doi.org/10.5194/jsss-8-329-2019
https://doi.org/10.5194/jsss-8-329-2019
Regular research article
 | 
18 Dec 2019
Regular research article |  | 18 Dec 2019

AC characteristics of low-ohmic foil shunts influenced by eddy currents in the mounting body

Mario Schönecker-Baußmann

Related subject area

Sensor technologies: Sensor materials
Impact of electrode conductivity on mass sensitivity of piezoelectric resonators at high temperatures
Sebastian Schlack, Hendrik Wulfmeier, and Holger Fritze
J. Sens. Sens. Syst., 11, 299–313, https://doi.org/10.5194/jsss-11-299-2022,https://doi.org/10.5194/jsss-11-299-2022, 2022
Short summary
Improving the electrical and structural stability of highly piezoresistive nickel–carbon sensor thin films
Günter Schultes, Mario Cerino, Angela Lellig, and Marcus Koch
J. Sens. Sens. Syst., 11, 137–147, https://doi.org/10.5194/jsss-11-137-2022,https://doi.org/10.5194/jsss-11-137-2022, 2022
Short summary
Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis
Olena Yurchenko, Hans-Fridtjof Pernau, Laura Engel, Benedikt Bierer, Martin Jägle, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 10, 37–42, https://doi.org/10.5194/jsss-10-37-2021,https://doi.org/10.5194/jsss-10-37-2021, 2021
Short summary
Improvement of the performance of a capacitive relative pressure sensor: case of large deflections
Samia Achouch, Fakhita Regragui, and Mourad Gharbi
J. Sens. Sens. Syst., 9, 401–409, https://doi.org/10.5194/jsss-9-401-2020,https://doi.org/10.5194/jsss-9-401-2020, 2020
Morphological characterization and porosity profiles of tantalum glancing-angle-deposited thin films
Tobias Ott and Gerald Gerlach
J. Sens. Sens. Syst., 9, 79–87, https://doi.org/10.5194/jsss-9-79-2020,https://doi.org/10.5194/jsss-9-79-2020, 2020

Cited articles

Bergsten, T. and Rydler, K.-E.: Realization of Absolute Phase and AC Resistance of Current Shunts by Ratio Measurements, IEEE T. Instrument. Meas., 68, 2041–2046, https://doi.org/10.1109/TIM.2018.2882927, 2019. a
Bosco, G. C., Garcocz, M., Lind, K., Pogliano, U., Rietveld, G., Tarasso, V., Voljč, B., and Zachovalová, V. N.: Phase Comparison of High Current Shunts up to 100 kHz, IEEE T. Instrument. Meas., 60, 2359–2365, https://doi.org/10.1109/TIM.2011.2108553, 2011. a
Budovsky, I.: Standard of Electrical Power at Frequencies Up to 200 kHz, IEEE T. Instrument. Meas., 58, 1010–1016, https://doi.org/10.1109/TIM.2008.2012376, 2009. a
Eaton, J. W., Bateman, D., Hauberg, S., and Wehbring, R.: GNU Octave, 3rd Edn., available at: http://www.gnu.org/software/octave/octave.pdf (last access: 17 December 2019), 2011. a, b
GDA: Aluminium in der Elektrotechnik und Elektronik, technisches Merkblatt E01, GDA Gesamtverband der Aluminiumindustrie, Düsseldorf, available at: http://www.aluinfo.de/files/_media/dokumente/Downloads/Technische Daten/Merkblaetter/E1_Aluminium_in_der_Elektrotechnik_und_Elektronik.pdf (last access: 17 December 2019), 1999. a
Download
Short summary
We came across some problems with the current measurement shunts while building a transfer normal power analyzer for 150 kHz within a cooperation project of the manufacturer ZES ZIMMER along with PTB, the National Metrology Institute of Germany and Bundesnetzagentur Berlin. We decided to utilize simulations with the numerical field simulation program Fast Henry to determine the cause of this frequency behavior. We found adequate justification and give recommendations for the shunt manufacturing.