Bacher, J.-P., Joseph, C., and Clavel, R.: Flexures for high precision
robotics, Ind. Robot, 29, 349–353,
https://doi.org/10.1108/01439910210432911, 2002. a

Baumann, H., Eichenberger, A., Cosandier, F., Jeckelmann, B., Clavel, R.,
Reber, D., and Tommasini, D.: Design of the new METAS watt balance experiment
Mark II, Metrologia, 50, 235–242, https://doi.org/10.1088/0026-1394/50/3/235, 2013. a

Baumgartl, H., Hilbrunner, F., Fröhlich, T., and Jäger, G.: Parametric
mechatronic model of a load cell with electromagnetic force compensation,
IMEKO TC3 & TC5 & TC22 International Conference: [IMEKO 2010 held
in Pattaya, Thailand from 21 to 25 November 2010; Metrology in modern
context], 29–32, 2010. a

Conrady, A. E.: A Study of the Balance, P. R. Soc. A,
101, 211–224, 1922. a, b, c

Darnieder, M., Theska, R., Fröhlich, T., Pabst, M., Wenig, R., and
Hilbrunner, F.: Design of high-precision weighing cells based on static
analysis, Engineering for a changing world: 59th IWK, Ilmenau Scientific
Colloquium, Technische Universität Ilmenau, 11–15 September 2017:
proceedings, 2017. a

Darnieder, M., Fröhlich, T., and Theska, R.: Tilt sensitivity modeling of a
monolithic weighing cell structure, in: Interdisciplinary Applications of
Kinematics, edited by: Kecskeméthy, A. and Geu Flores, F., Springer
International Publishing, 2018. a

Eastman, F. S.: The Design of Flexure Pivots, J. Aeronaut.
Sci., 5, 16–21, https://doi.org/10.2514/8.499, 1937. a

Gläser, M. and Borys, M.: Precision mass measurements, Rep. Prog.
Phys., 72, 126101, https://doi.org/10.1088/0034-4885/72/12/126101, 2009. a, b, c

Gräser, P., Linß, S., Zentner, L., and Theska, R.: On the influence of
the flexure hinge orientation in planar compliant mechanisms for
ultra-precision applications, Engineering for a changing world: 59th IWK,
Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 11–15
September 2017: proceedings, 2017. a

Henein, S., Aymon, C., Bottinelli, S., and Clavel, R.: Fatigue failure of thin
wire-electrodischarge-machined flexure hinges, in: Proc. SPIE 3834,
Microrobotics and Microassembly, edited by: Nelson, B. J. and Breguet, J.-M.,
SPIE Proceedings, 110–121, SPIE, https://doi.org/10.1117/12.357815, 1999. a

Hilbrunner, F., Baumgartl, H., Fröhlich, T., and Jäger, G.: Comparison
of different load changers for EMFC-balances, IMEKO TC3 & TC5 & TC22
International Conference: [IMEKO 2010 held in Pattaya, Thailand from
21st to 25th November 2010; Metrology in modern context], 65–68, 2010. a

Hilbrunner, F., Baumgartl, H., Petzold, R., Fröhlich, T., and Jäger,
G.: Investigation on the impedance-frequency-response for a dynamic behaviour
description of elecromagnetic force compensated load-cells, Proceedings of XX
IMEKO World Congress: 9–14 September 2012, Bexco, Busan,
Republic of Korea, 2012. a

Hilbrunner, F., Weis, H., and Fröhlich, T.: Parameterization and
optimisation of EMC balances based on the frequency response of the
impedance, Measurement, 51, 349–355,
https://doi.org/10.1016/j.measurement.2014.01.032, 2014. a

Hilbrunner, F., Rahneberg, I., and Fröhlich, T.: Watt balance with lever
transmission based on commercial EMFC load cell, Tech. Mess.,
85, 658–679, https://doi.org/10.1515/teme-2017-0065, 2017. a

Kochsiek, M. and Gläser, M.: Comprehensive mass metrology, Wiley-VCH,
Weinheim and New York, https://doi.org/10.1002/3527602992, 2000. a

Kühnel, M., Rivero, M., Diethold, C., Hilbrunner, F., and Fröhlich, T.:
Dual axis tiltmeter with nanorad resolution based on commercial force
compensation weigh cells, Shaping the future by engineering: 58th IWK,
Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 8–12
September 2014; proceedings, 2014. a, b

Kühnel, M., Fern, F., and Fröhlich, T.: Novel monolithic pendulum
tiltmeter with Nanorad resolution, Tech. Mess., 85, 244–251,
https://doi.org/10.1515/teme-2017-0097, 2018. a

Linß, S., Schorr, P., and Zentner, L.: General design equations for the rotational stiffness,
maximal angular deflection and rotational precision of various notch flexure hinges, Mech. Sci., 8, 29–49, https://doi.org/10.5194/ms-8-29-2017, 2017. a

Marangoni, R. R., Rahneberg, I., Hilbrunner, F., Theska, R., and Fröhlich,
T.: Analysis of weighing cells based on the principle of electromagnetic
force compensation, Meas. Sci. Technol., 28, 75101,
https://doi.org/10.1088/1361-6501/aa6bcd, 2017. a, b

Quinn, T. J.: The beam balance as an instrument for very precise weighing,
Meas. Sci. Technol., 3, 141–159, https://doi.org/10.1088/0957-0233/3/2/001,
1992. a, b

Quinn, T. J., Speake, C. C., and Davis, R. S.: A 1 kg Mass Comparator Using
Flexure-Strip Suspensions: Preliminary Results, Metrologia, 23, 87, https://doi.org/10.1088/0026-1394/23/2/002,
1986. a

Richard, P., Fang, H., and Davis, R.: Foundation for the redefinition of the
kilogram, Metrologia, 53, A6–A11, https://doi.org/10.1088/0026-1394/53/5/A6, 2016. a

Rothleitner, C., Schleichert, J., Rogge, N., Günther, L., Vasilyan, S.,
Hilbrunner, F., Knopf, D., Fröhlich, T., and Härtig, F.: The
Planck-Balance–using a fixed value of the Planck constant to calibrate
E1/E2-weights, Meas. Sci. Technol., 29, 074003,
https://doi.org/10.1088/1361-6501/aabc9e, 2018. a

Smith, S. T. and Chetwynd, D. G.: Foundations of ultraprecision mechanism
design, vol. v. 2 of Developments in nanotechnology, Gordon and
Breach Science Publishers, Yverdon, Switzerland, 1992.
a

Speake, C. C.: Fundamental Limits to Mass Comparison by Means of a Beam
Balance, P. R. Soc. A, 414, 333–358, https://doi.org/10.1098/rspa.1987.0147, 1987. a, b, c, d, e

Stock, M., Barat, P., Davis, R. S., Picard, A., and Milton, M. J. T.:
Calibration campaign against the international prototype of the kilogram in
anticipation of the redefinition of the kilogram part I: Comparison of the
international prototype with its official copies, Metrologia, 52, 310–316,
https://doi.org/10.1088/0026-1394/52/2/310, 2015. a