Afghani, A., Gomar, F., and Madrakian, T.: CoFe2O4 nanoparticles
modified carbon paste electrode for simultaneous detection of oxycodone and
codeine in human plasma and urine, Sensor Actuat. B-Chem., 233, 263–271,
https://doi.org/10.1016/j.snb.2016.04.067, 2016.
Anklam, E.: A review of the analytical methods to determine the geographical
and botanical origin of honey, Food Chem., 63, 549–562,
https://doi.org/10.1016/S0308-8146(98)00057-0, 1998.
Apetrei, I. M. and Apetrei, C.: Application of voltammetric e-tongue for the
detection of ammonia and putrescine in beef products, Sensor Actuat. B-Chem.,
234, 371–379, https://doi.org/10.1016/j.snb.2016.05.005, 2016.
Ares, M., Soto, M. E., Nozal, M. J., and Bernal, J. L.: Determinations of
Resveratrol and Piceid Isomers in bee pollen by liquid chromatography coupled
to electrospray ionization-mass spectrometry, Food Anal. Methods, 8,
1565–1575, https://doi.org/10.1007/s12161-014-0048-8, 2015.
Ball, D. W.: The chemical composition of honey, J. Chem. Educ., 84, 1643,
https://doi.org/10.1021/ed084p1643, 2007.
Belay, A., Haki, G. D., Birringer, M., Borck, H., Addi, A., Baye, K., and
Melaku, S.: Rheology and botanical origin of Ethiopian monofloral honey, Food
Sci. Tech., 75, 393–401, 2017.
Bijad, M., Karimi-Maleh, H., and Khalilzadeh, Md. A.: Application of ZnO/CNTs
Nano composite Ionic Liquid Paste electrodes as a sensitive voltammetric
sensor for determination of Ascorbic acid in food samples, Food Anal. Meth.,
6, 1639–1647, https://doi.org/10.1007/s12161-013-9585-9, 2013.
Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., Silva, W.
P., Zanusso, J. T., and Dutra, I.: Antibacterial and antioxidant activity of
honey from the state of Rio Grande do Sul, Brazil, LWT-Food Sci. Technol.,
65, 333–340, https://doi.org/10.1016/j.lwt.2015.08.018, 2015.
Codex Alimentarius Commission: Draft revised standard for standard for honey
(at step 10 Of the Codex procedure), in: Report Of The Seventh Session Of The
Codex Committee On Sugars, Alinorm 01/25, 19–26, 2001.
Cavazza, A., Corradini, C., Musci, M., and Salvadeo, P.: High-performance
liquid chromatographic phenolic compound fingerprint for authenticity
assessment of honey, J. Sci. Food Agr., 93, 1169–1175, 2013.
Ceto, X., Gonzale-Calabuig, A., Crespo, N., Perez, S., Capdevila, J.,
Puig-Pujol, A., and Del-Vall, M.: Electronic tongues to assess wine sensory
descriptors, J. Talanta, 62, 218–224, 2017.
Chua, L. S., Abdul-Rahaman, N. L., Sarmidi, Md. R., and Aziz, R.:
Multi-elemental composition and physical properties of honey samples from
Malaysia, Food Chem., 135, 880–887, 2012.
Das, S. C., Sadani, K., Bandyopadhyay, R., and Pramanik, P.: Characteristics
of Molybdenum doped Zinc Oxide Nanoparticles Chemoresistor Pellets Towards
Black Tea-Biochemicals, Int. J. Adv. Eng. Sci. Tech., 120–131, ISSN:
2319-1120/V3N3:120-131, 2014.
Dias, L. G., Veloso, A. C. A., Sousa Mara, E. B. C., Estevinho, L., Machado
Adelio, A. S. C., and Peres Antonio, M.: A novel approach honey pollen
profile assessment using an electronic tongue and chemometric tools, Anal.
Chim. Acta, 900, 36–45, 2015.
Dinca, O. R., Elena, R., Popescu, R., Costinel, D., and Radu, G. L.:
Geographical and botanical origin discrimination of Romanian Honey using
complex stable isotope data and Chemmometrics, Food Anal. Meth., 8, 401–412,
2015.
El Sohaimy, S. A., Masry, S. H. D., and Shehata, M. G.: Physicochemical
characteristics of honey from different origins, Ann. Agr. Sci., 60,
279–287, 2015.
Feas, X., Pires, J., Iglesias, A., and Estevinho, M. L.: Characterization of
artisanal honey produced on the Northwest of Portugal by melissopalynological
and physic-chemical data, Food Chem. Toxicol., 48, 3462–3470, 2010.
Fernandez Garcia, M. and Rodriguez, J. A.: Metal oxide nanoparticles, in:
Nanomaterial: Inorganic and Bioinorganic Perspectives, Brookhave National
Laboratory, No. BNL-79479-2007-BC, 2007.
Haykin, S.: Neural Networks – A comprehensive foundation, 2nd edn., Pearson
Education, Asia, 2001.
Jiang, T.-F., Chong, L., Yue, M.-E., Wang, Y.-H., and Lv, Z.-H.: Separation
and determination of carbohydrate in food samples by capillary
electrophoresis using dynamically coating the capillary with indirect UV
detection, Food Anal. Method., 8, 2588–2594, https://doi.org/10.1007/s12161-015-0157-z,
2015.
Kadri, S. M., Zaluski, R., and Orsi, R. O.: Nutritional and mineral contents
of honey extracted by centrifugation and pressed processes, Food Chem., 218,
237–241, 2017.
Karabagias, I. K., Badeka, A. V., Kontakos, S., Karabournioti, S., and
Kontominas, M. G.: Botanical discrimination of Greek unifloral honeys with
physico-chemical and chemometric analyses, Food Chem., 165, 181–190, 2014a.
Karabagias, I. K., Vavoura, M. G., Nikolaou, C., Badeka, A. V., Kontakos, S.,
and Kontominas, M. G.: Floral authentication of Greek unifloral honeys based
on the combination of phenolic compounds, physicochemical parameters and
chemometrics, Food Res. Int., 62, 753–760, 2014b.
Karim-Nezhad, G., Khorablou, Z., Zamani, M., Sayed Dorraji, P., and
Alamgholiloo, M.: Voltammetric sensor for tartrazine determination in soft
drinks using poly (p-amino benzene sulfonic acid) /zinc oxide nanoparticles
in carbon Paste electrode, J. Food Drug Anal., 25, 293–301,
https://doi.org/10.1016/j.jfda.2016.10.002, 2016.
Kaskoniene, V., Ruockuviene, G., and Kaskonas, P.: Chemometric analysis of
bee pollen based on volatile and phenolic compound composition and
antioxidant properties, Food Anal. Meth., 8, 1150–1163, 2015.
Legin, A., Rudnitskaya, A., and Vlasov, Y.: Electronic tongues: new
analytical perspective for chemical sensors, Comprehensive Analytical
Chemistry, XXXIX, 437–486, ISSN:0166-526X, 2003.
Mandal, M. D. and Mandal, S.: Honey: its medicinal property and antibacterial
activity, Asian Pac. J. Trop. Biomed., 1154–160, 2011.
Missio da Silva, P., Gauche, C., Gonzaga, L. V., Carolina, A., Costa, O., and
Fett, R.: Honey chemical composition, stability and authenticity, Food Chem.,
196, 309–323, 2016.
Oryan, A., Alem Zadeh, E., and Moshin, A.: Biological properties and
therapeutic activities of honey in wond healing: A narrative review and
meta-analysis, J. Tissue Viability, 25, 98–118, 2016.
Ozcan, M. M. and Olmez, C.: Some qualitative properties of different
monofloral Honeys, Food Chem., 163, 212–218, 2014.
Pearce, T. C., Schiffman, S. S., Nagle, H. T., and Gardner, J. W.: Handbook
of Machine Olfaction, Wiley-VCH Verlag GmbH & Co. KGaA , 2003.
Pentos, K., Luczycka, D., and Kaplon, T.: The identification of relationship
between selected honey parameters by extracting the contribution of
independent variables in a neural network model, Eur. Food Res. Technol.,
241, 793–801, 2015.
Peris, M. and Gilabert, L. E.: Electronic noses and tongues to assess food
authenticity and adulteration, Trends Food Sci. Tech., 58, 40–54, 2016.
Pohl, P., Stecka, H., Sergiel, I., and Jamroz, P.: Different aspects of
elemental analysis of honey by flame atomic absorption and emission
spectrometry: A review, Food Anal. Meth., 5, 737–751,
https://doi.org/10.1007/s12161-011-9309-y, 2011.
Rezic, I., Horvat, A. J. M., Babi, C. S., and Kastelan-Macan, M.:
Determination of pesticides in honey by ultrasonic solvent extraction and
thin-layer chromatography, Ultrason. Sonochem., 12, 477–481, 2005.
Rodriguez Reinoso, F.: The role of carbon materials in heterogeneous
catalysis, Carbon, 36, 159–175, 1998.
Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., and Rahman, A.:
Application of analytical methods in authentication and adulteration of
honey, Food Chem., 217, 687–698, 2017.
Skrzypczynska, K., Kusmierek, K., and Swiatkowski, A.: Carbon paste
electrodes modified with various carbonaceous materials for the determination
of 2,3-dichlorophenoxyacetic acid by differential pulse voltammetry, J.
Electroanal. Chem., 766, 8–15, 2016.
Soto, V. C., Maldonado, I. B., Jofre, V. P., Galmarini, C. R., and Silva, M.
F.: Direct analysis of nectar and floral volatile organic compounds in hybrid
onions by HS- SPME/GC-MS: Relationship with pollination and seed production,
Microchemical J., 122, 110–118, 2015.
Sousa, M. E., Dias, L. G., Veloso, A. C., Estevinho, L., Peres, A. M., and
Machado, A. A.: Practical procedure for discriminating monofloral honey with
a broad pollen profile variability using an electronic tongue, J. Talanta,
128, 284–292, 2014.
Svancara, I. and Schachl, K.: Testing of unmodified carbon paste electrodes,
Chemicke Listy, 93, 490–499, 1999.
Svancara, I., Vytras, K., Barek, J., and Zima, J.: Carbon Paste electrodes in
Modern Electroanalysis, CRC Cr. Rev. Anal. Chem., 31, 311–345, 2001.
Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., and Wang, J.: Carbon
paste electrodes in Facts, Numbers, and Note: A review on the occasion of the
50-years Jubilee of carbon paste in electrochemistry and electroanalysis,
Electroanalysis, 21, 7–28, 2008.
Tavakolian, E., Tashkhourian, J., Razmi, Z., Kazemi, H., and Hosseini
Sarvari, M.: Ethanol electro-oxidation at carbon paste electrode modified
with Pd-ZnO Nanoparticles, Sensor Actuat. B-Chem., 230, 87–93, 2016.
Terbouche, A., Lameche, S., Ramdane-Terbouche, C. A., Guerniche, D., Lerari,
D., Lerari, D., and Hauchard, D.: A new electrochemical sensor based on
carbon paste Electrode/Ru (III) complex for determination of nitrite:
Electrochemical impedance and cyclic voltammetry measurements, Measurement,
92, 524–533, 2016.
Tiwari, K., Tudu, B., Bandyopadhyay, R., and Chatterjee, A.: Discrimination
of monofloral honey using cyclic voltammetry, Proceedings IEEE-NCETACS,
132–136, 2012.
Tiwari, K., Tudu, B., Bandyopadhyay, R., and Chatterjee, A.: Identification
of monofloral honey using voltammetric electronic tongue, J. Food
Engineering, 117, 206–210, 2013.
Ulloa, P. A., Guerra, R., Cavaco, A. M., Figueira, A. M., and Brigas, A. F.:
Determination of the botanical origin of honey by sensor fusion of impedance
e-tongue and optical spectroscopy, Comput. Electron. Agr., 94, 1–11, 2013.
Wang, P.: Bio inspired smell and taste sensors, Springer, ISBN: 7030457617,
2015.
Wei, Z. and Wang, J.: Classification of monofloral honeys by voltammetric
electronic tongue with chemometrics method, Electrochim. Acta, 56,
4907–4915, 2011.
Wei, Z. and Wang, J.: The evaluation of sugar content and firmness of non-
climatic pears based on voltammetric electronic tongue, J. Food Eng., 117,
158–164, 2013.
Wei, Z. and Wang, J.: Tracing floral and geographical origins of honeys by
potentiometric and voltammetric electronic tongue, Comput. Electron. Agr.,
108, 112–122, 2014.
Woodcock, T., Downey, G., Kelly, J. D., and Donnell, C.: Geographical
classification of honey samples by near-infrared spectroscopy: a feasibility
study, J. Agri. Food Chem., 55, 9128–9134, 2007.
Yousuf, F. A., Mehmood, M. H., Malik, A., Siddiqui, R., and Khan, N. A.:
Antiacanthamoebic properties of natural and marketed honey in Pakistan, Asian
Pac. J. Trop. Biomed., 6, 967–972, 2016.
Zheng, X., Zhao, Y., Wu, H., and Feng, J.: Origin identification and
quantitative analysis of honey by nuclear magnetic resonance and chemometrics
techniques, Food Anal. Meth., 9, 1470–1479, https://doi.org/10.1007/s12161-015-0325-1,
2015.