Albrecht, H.-E., Borys, M., Damaschke, N., and Tropea, C.: Laser Doppler and
Phase Doppler Measurement Techniques, Springer, Berlin, Heidelberg, New York,
https://doi.org/10.1007/978-3-662-05165-8, 2003. a

Bhatia, H., Norgard, G., Pascucci, V., and Bremer, P.-T.: The
Helmholtz-hodge decomposition – a survey, IEEE T. Vis. Comput. Gr., 19,
1386, https://doi.org/10.1109/TVCG.2012.316, 2013. a

Bhatia, H., Pascucci, V., and Bremer, P.-T.: The natural Helmholtz-hodge
decomposition for open-boundary flow analysis, IEEE T. Vis. Comput. Gr., 20,
1566, https://doi.org/10.1109/TVCG.2014.2312012, 2014. a, b, c, d, e, f, g, h

De Roeck, W., Baelmans, M., and Desmet, W.: An aerodynamic/acoustic splitting
technique for hybrid CAA applications, in: 13th AIAA/CEAS Aeroacoustics
Conference, 2007-3726, 21–23 May 2007, Rome, Italy, https://doi.org/10.2514/6.2007-3726,
2007. a

Denaro, F. M.: On the application of the Helmholtz–Hodge decomposition in
projection methods for incompressible flows with general boundary conditions,
Int. J. Numer. Meth. Fl., 43, 43, https://doi.org/10.1002/fld.598, 2003. a

Eldredge, J. D. and Dowling, A. P.: The absorption of axial acoustic waves by
a perforated liner with bias flow, J. Fluid Mech., 485, 307,
https://doi.org/10.1017/S0022112003004518, 2003. a

Galvin, K. J., Linke, A., Rebholz, L. G., and Wilson, N. E.: Stabilizing poor
mass conservation in incompressible flow problems with large irrotational
forcing and application to thermal convection, Comput. Method. Appl. M., 237,
166, https://doi.org/10.1016/j.cma.2012.05.008, 2012. a

Haufe, D., Fischer, A., Czarske, J., Schulz, A., Bake, F., and Enghardt, L.:
Multi-scale measurement of acoustic particle velocity and flow velocity for
liner investigations, Exp. Fluids, 54, 1, https://doi.org/10.1007/s00348-013-1569-4,
2013. a, b, c, d, e, f, g

Haufe, D., Pietzonka, S., Fischer, A., Schulz, A., Bake, F., Enghardt, L.,
and Czarske, J.: Aeroacoustic near-field measurements with microscale
resolution, Meas. Sci. Technol., 25, 105301-1,
https://doi.org/10.1088/0957-0233/25/10/105301, 2014. a, b

Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche
den Wirbelbewegungen entsprechen, J. reine angew. Math., 1858, 25,
https://doi.org/10.1515/crll.1858.55.25, 1858. a

Heuwinkel, C., Fischer, A., Röhle, I., Enghardt, L., Bake, F., Piot, E.,
and Micheli, F.: Characterization of a Perforated Liner by Acoustic and
Optical Measurements, in: 16th AIAA/CEAS Aeroacoustics Conference,
2010–3765, Stockholm, Sweden, https://doi.org/10.2514/6.2010-3765, 2010. a, b, c, d, e, f, g, h

Kirk, D. B. and Hwu, W. W.: Programming Massively Parallel Processors: A
Hands-on Approach, Morgan Kaufmann, Burlington, USA, ISBN: 978-0-12-381472-2, 2010.
a

Marx, D., Aurégan, Y., Bailliet, H., and Valière, J. C.: PIV and LDV
evidence of hydrodynamic instability over a liner in a duct with flow, J.
Sound Vib., 329, 3798, https://doi.org/10.1016/j.jsv.2010.03.025, 2010. a, b

Ribeiro, P. C., de Campos Velho, H. F., and Lopes, H.: Helmholtz-Hodge
decomposition and the analysis of 2D vector field ensembles, Comput.
Graph., 55, 80, https://doi.org/10.1016/j.cag.2016.01.001, 2016. a

Rossing, T. D.: Handbook of acoustics, Springer, New York City, US-NY,
https://doi.org/10.1007/978-1-4939-0755-7, 2007. a

Rousseaux, G., Seifer, S., Steinberg, V., and Wiebel, A.: On the Lamb vector
and the hydrodynamic charge, Exp. Fluids, 42, 291,
https://doi.org/10.1007/s00348-006-0238-2, 2007. a

Rupp, J., Carrotte, J., and Spencer, A.: Interaction Between the Acoustic
Pressure Fluctuations and the Unsteady Flow Field Through Circular Holes, J.
Eng. Gas Turb. Power, 132, 061501–1, https://doi.org/10.1115/1.4000114, 2010. a, b

Schlüßler, R., Bermuske, M., Czarske, J., and Fischer, A.:
Simultaneous three-component velocity measurements in a swirl-stabilized
flame, Exp. Fluids, 56, 1, https://doi.org/10.1007/s00348-015-2055-y, 2015. a, b

Schulz, A., Haufe, D., Czarske, J., Fischer, A., Bake, F., and Enghardt, L.:
Spectral Analysis of Velocity Fluctuations in the Vicinity of a Bias Flow
Liner with respect to the Damping Efficiency, Acta Acust. united Ac., 101,
24, https://doi.org/10.3813/AAA.918801, 2015. a, b, c

Zhao, D. and Li, X. Y.: A review of acoustic dampers applied to combustion
chambers in aerospace industry, Prog. Aerosp. Sci., 74, 114,
https://doi.org/10.1016/j.paerosci.2014.12.003, 2015. a