Articles | Volume 6, issue 2
https://doi.org/10.5194/jsss-6-351-2017
https://doi.org/10.5194/jsss-6-351-2017
Regular research article
 | 
16 Oct 2017
Regular research article |  | 16 Oct 2017

Transmitted light pH optode for small sample volumes

Christian Rogge, Steffen Zinn, Paolo Prosposito, Roberto Francini, and Andreas H. Foitzik

Related subject area

Sensor principles and phenomena: Optical and infrared sensors
Real-time active-gas imaging of small gas leaks
Max Bergau, Thomas Strahl, Benjamin Scherer, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 12, 61–68, https://doi.org/10.5194/jsss-12-61-2023,https://doi.org/10.5194/jsss-12-61-2023, 2023
Short summary
Non-invasive blood sugar detection by cost-effective capacitance spectroscopy
Shazzad Rassel, Md Rejvi Kaysir, Abdulrahman Aloraynan, and Dayan Ban
J. Sens. Sens. Syst., 12, 21–36, https://doi.org/10.5194/jsss-12-21-2023,https://doi.org/10.5194/jsss-12-21-2023, 2023
Short summary
Resonant photoacoustic cells for laser-based methane detection
Katrin Schmitt, Mara Sendelbach, Christian Weber, Jürgen Wöllenstein, and Thomas Strahl
J. Sens. Sens. Syst., 12, 37–44, https://doi.org/10.5194/jsss-12-37-2023,https://doi.org/10.5194/jsss-12-37-2023, 2023
Short summary
Fabrication of integrated polysilicon waveguides for mid-infrared absorption sensing
Gerald Stocker, Cristina Consani, Pooja Thakkar, Clement Fleury, Andreas Tortschanoff, Khaoula-Farah Ourak, Gerald Pühringer, Reyhaneh Jannesari, Parviz Saeidi, Elmar Aschauer, Ulf Bartl, Christoph Kovatsch, Thomas Grille, and Bernhard Jakoby
J. Sens. Sens. Syst., 11, 225–231, https://doi.org/10.5194/jsss-11-225-2022,https://doi.org/10.5194/jsss-11-225-2022, 2022
Short summary
Near-infrared LED system to recognize road surface conditions for autonomous vehicles
Hongyi Zhang, Shéhérazade Azouigui, Rabia Sehab, and Moussa Boukhnifer
J. Sens. Sens. Syst., 11, 187–199, https://doi.org/10.5194/jsss-11-187-2022,https://doi.org/10.5194/jsss-11-187-2022, 2022
Short summary

Cited articles

Brown, J. D., Bell, N., Li, V., and Cantrell, K.: Quantitative pH assessment of small-volume samples using a universal pH indicator, Anal. Biochem., 462, 29–31, 2014.
Capel-Cuevas, S., Cuéllar, M., de Orbe-Payá, I., Pegalajar, M., and Capitán-Vallvey, L.: Full-range optical pH sensor based on imaging techniques, Anal. Chim. Acta, 681, 71–81, 2010.
Chen, H.-X., Wang, X.-D., Song, X.H., Zhou, T.-Y., Jiang, Y.-Q., and Chen, X.: Colorimetric optical pH sensor production using a dual-color system, Sensor. Actuat. B-Chem., 146, 278–282, 2010.
Dean, J.: Lange's Handbook of Chemistry, McGraw-Hill, 14th Edn., chap. 8, 8.115–8.116, 1992.
Di Veroli, G. Y., Fornari, C., Goldlust, I., Mills, G., Koh, S. B., Bramhall, J. L., Richards, F. M., and Jodrell, D. I.: An automated fitting procedure and software for dose-response curves with multiphasic features, Sci. Rep.-UK, 5, 14701, https://doi.org/10.1038/srep14701, 2015.
Download
Short summary
This work presents a cost-effective optical-based sensor for pH monitoring of sample volumes less than 150 µL. As part of a bigger project to develop a stand-alone micro bioreactor system, measurements carried out with phenol red and DMEM reported a standard error of calibration in the physiologic pH range (6.5–7.5) of pH ±0.04. Compared to other accessible optical-based sensors this reported system is a good alternative regarding the overall costs of less than EUR 50.